
A Methodology for Policy Conflict Detection Using
Model Checking Techniques?

Peter H. Deussen1, Ina Schieferdecker1, Hiroaki Kamoda2

1 Fraunhofer Research Institute for Open Communication Systems, Berlin, Germany
{deussen,schieferdecker}@fokus.fraunhofer.de

2 NTT Data Corporation, Tokyo, Japan kamodah@nttdata.co.jp

Abstract. Security issue is an increasing concern and pressures are increasing on
organizations to take a more systematic approach to incorporating security into
their systems. An important component of security requirements is access control.
In this paper, we introduce a variant of the role based access control model that
assigns role to both partners of an interaction. We further develop a methodology to
determine whether a set of access control policies is contradictionary, i. e, contains
a conflict. Model checking techniques are employed for conflict analysis.

1 Introduction

Security issue is an increasing concern and pressures are increasing on organizations
to take a more systematic approach to incorporate security into their systems. The key
to this is analyzing security requirements early on, rather than treating security as an
add-on, as is often the case. An important component of security requirements is access
control. The goals of access control systems are to protect resources from unauthorized
access and to ensure access to those resources for authorized users. There are a number of
models of access control which aim to achieve this goal. The Bell-LaPadula model [14]
has been particularly influential, and forms the basis of a family of multi-level security
models, usually referred to as mandatory access control. Discretionary access control
on the other hand has been accepted as a less rigorous way of controlling access. In this
type of access control it is the owner of a resource (usually a file) who controls other
users’ accesses to the resource.

A promising alternative to these models is role-based access control (RBAC) [2, 16],
which allows the specification of access control policy in a way that maps naturally to an
organization’s structure. This approach brings advantages such as easier understanding
of access control policies and scalable administration. In RBAC, roles introduce a level of
indirection (and abstraction) in the mapping of users and resources to privileges. Instead
of mapping users and resources directly to privileges, users can assume a number of
roles. In this paper, we use a variant of RBAC that allows the assignment of roles to both
the user and the accessed resource of an interaction.

Security, however, is the greatest concern in access control. It was proven that the
security problem (that is, verifying that a particular configuration is secure) is undecid-
able even for the simple access matrix [13]. Hence, access control models that enable
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flexible expression of access control policies (like role-based ones) make the verification
of whether a particular access configuration is secure (i.e. subjects do not have access to
unauthorized objects) even more difficult. Constraints have been introduced to enable
security [12], usually specified in terms of policies with negative modality. However,
the coexistence of policies with different modalities inevitably leads to conflicts.

In this paper, we describe a methodology for policy conflict detection in systems
with multiple distributed objects and multiple access control entities that regulate the
access to services provided by those objects. The methodology comprises the following
key elements:

1. The translation of a set of policies into an effective policy evaluation procedure
that determines for a given user request to execute a service provided by a certain
resource whether this request is granted or denied.

2. This procedure is embedded into an environment model that emulates the behavior
of service requestors and providers. This environment model can be generated au-
tomatically in a canonical way from a service description (although this canonical
model is not always desirable).

3. The model checker in use is SPIN [11]. The composition of the various model parts
mentioned above is translated into PROMELA, the model specification language
of SPIN. The resulting program is further equipped with a (apparently very simple)
verification task to detect a conflict in the set of policies in question.

4. If a system under verification fails to satisfy a given property, SPIN is sometimes
able to produce a so-called counterexample, that is a behavioral trace that leads from
the initial system state into a state in which the property is violated. This trace—if
properly displayed—provides useful information about the cause of the problem.
For our purposes, we use a technique based on event and state logging to derive a
meaningful representation of counterexample traces.

There are several approaches to detect conflicts in policy sets, as well as approaches
that aim also on conflict resolution. In [5], a rule-based deduction method is proposed.
The authors of [17] describe a problem translation into a logic program implemented
in Prolog. Lupo and Sloman [15] present an approach to determine possible conflicts in
RBAC by checking of role domain overlaps.

To the best knowledge of the authors, the only publication which describes the
application of model checking to policy base validation is [1]. The authors apparently
use also the SPIN model checker for several verification tasks of work flows in the setting
of so-called computer supported cooperative work systems. A systematic approach to
obtain validation models is not in the focus of this paper; result back interpretation is
not addressed.

This paper is organized as follows. In Section 2 we introduce the access control
schema that is used throughout this paper. We moreover discuss several sources of policy
conflicts. Section 3 gives a very brief overview on available model checking techniques
and discusses the general methodology that is employed for system validation using a
model checker. We also discuss how this methodology can be applied to policy conflict
detection.

In Section 4, a generic system model which builds the background of our valida-
tion activities is presented. Section 5 explains how a set of policies is translated into a
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PROMELA program. In Section 6, we address the problem how to translate information
on possible conflicts from the messages provided by the model checker into a message
in the terminology of the original problem statement. The final Section 7 provides a
summary and an outlook on further works.

2 Role Based Access Control

Traditionally, RBAC has been designed for dealing with a relatively small number of
resources (objects) to be protected. In fact, the typical application scenario is an enterprise
having several thousands of employees accessing a few tens of applications. However,
as we deal with network security where the number of objects can be considerably high
or even not known in advance, a mean for object abstraction is needed as assigning
permission to single objects become unfeasible or impossible.

Grouping of objects in domains has been introduced by M. Sloman et al. in [6] and
[22] and before in [18] and integrated as part of the Ponder language [6], although without
aiming at create a new complete access control model. Domains provide a flexible and
pragmatic means of specifying boundaries of management responsibility and authority.
A domain represents a collection of objects which have been explicitly grouped together
to apply a common management policy. In the variant of role based access control that
we use in this paper it is possible to assign several roles to particular individuals. Role
assignment can be done both for subjects (i.e. entities that request access to certain
resources) and for objects (the resources itself).

To express this in a more mathematical flavour, let us assume a finite set of individuals
I and a finite sets S and O of subject roles and object roles, respectively. For convenience,
we assume S ∩ O = ∅. We moreover put R =df S ∪ O. We fix the conventions that
roles are denoted by lowercase boldfaced letters s, o, r, with possible subscripts, e. g.
s0, s1, s2. For individuals, italic letters like i, o, and s—again with possible subscripts—
are used. Let mbrs : R → P(I) and roles : I → P(R) be functions that return the
set of individuals of a particular role and the set of roles are assigned to a particular
individual, respectively. Further, let A be a set service identifiers. Services are provided
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Fig. 2. A conflict caused by policy propagation
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by individuals o ∈ I; a concrete service associated with a service identifier a ∈ A

provided by an individual o ∈ I is denoted by o.a.
Services execution is assumed to be guarded by some access control. This access

control is defined by a set of policy rules of the form s
x : ϕ ⇒ o.a, where x ∈ {+,−}

is a mode, s ∈ S and o ∈ O are called the subject role and the object role of the
policy, a ∈ A is a service identifier, and ϕ is a condition. We assume that there is a
number of atomic propositions available that relates to states of the underlying controlled
system (we will not explain the term “system” in a formal fashion). Conditions are then
defined as Boolean expressions (constructed using the operations¬,∧, and∨) over those
propositions.

Assume that an individual s ∈ I requests a service a ∈ A from another individual
o ∈ I; s is then called the subject and o is called the object of this interaction. Requests
are denoted as req(s, o, a). Let Π be a set of policies that define the access control for
the service o.a. A policy s

x : ϕ ⇒ o.a ∈ Π is called active for the request req(s, o, a)
if s ∈ mbrs(s) , o ∈ mbrs(o), and ϕ evaluates to true. The request is called permitted
by Π if

1. there is some active policy π ∈ Π with mode “+”, and
2. no policy π′ ∈ Π with mode “−” is active.

2.1 Policy Propagation

A propagation scheme for a set of policies Π assigns to each policy a set of roles for
which this policy does also hold. Suppose two mappings prgtS : Π → P(S) and
prgtO : Π → P(O) are defined such that s ∈ prgtS(π) and o ∈ prgtO(π) for all
policies s

x : ϕ ⇒ o.a ∈ Π . Then Π is called closed against a propagation scheme if
for all π = s

x
1 : ϕ ⇒ o1.a ∈ Π we also have s

x
2 : ϕ ⇒ o2.a ∈ Π for all s2 ∈ prgtS(π)

and for all o2 ∈ prgtO(π).
The above definition is quite general. In practice, propagation along hierarchical

structures defined in an organization is employed: Positive authorization is propagated
“upward” in the subject role ordering and “downward” in the object role ordering,
while negative authorization is propagated in the opposite direction (comp. Fig. 2 for an
example). Hence we assume that the sets S and R are partially ordered by the relations



6S and 6O, respectively. Let π = s
x : ϕ ⇒ o.a ∈ Π be a policy. Then the default

propagation scheme for π in Π is defined as follows:

1. if x = + then prgtS(π) =df {s′ ∈ S : s 6S s
′}

and prgtO(π) =df {o′ ∈ O : o
′ 6O o}

2. if x = − then prgtS(π) =df {s
′ ∈ S : s

′ 6S s}
and prgtO(π) =df {o′ ∈ O : o 6O o

′}

2.2 Conflicts

By a conflict we mean a contradicting assignment of permissions to some individual;
formally: Policies s

x
1 : ϕ1 ⇒ o1.a ∈ Π and s

y
2 : ϕ2 ⇒ o2.a ∈ Π are conflicting in Π

for some request req(s, o, a), if there is some system state such that both policies are
active for this request, and moreover, x =| y. Note that this implies s ∈ mbrs(s1) ∩
mbrs(s2) and o ∈ mbrs(o1) ∩ mbrs(o2)

What are the possible sources of conflicts?

Inconsistent Direct Assignment of Access Permissions The most obvious source of
conflicts is an error in the assignment of access permissions for some service. Conflicts of
this type can be easily detected by a simple search. By using a lexicographical ordering of
the policy base this search can be performed very efficiently. Please note that this simple
algorithm is too “pessimistic” because even if we have opposite policies assigned to
the same combination of subject and object roles and service, it is still possible that the
conditions that control the activation of these policies never get true simultaneously.

Policy Propagation Things get more complicated if automated policy generation fea-
tures like permission propagation are employed. Fig. 2 gives an example of a conflict
caused by policy propagation. In the example, access permissions on “confidential in-
formation” are assigned to “senior researchers”, while “research managers”—perhaps
accidentally—are not allowed to access “public information”. The default propagation
schema applied to the object role structure now causes a conflict. But since the propa-
gation scheme is also applied to the subject role structure, all roles are now “infected”
be the conflict between these two policies.

Multiple Assignment of Roles In RBAC, multiple assignment of roles is permitted,
i. e. it is possible for an individual to assume more than one role. Hence, inconsistent
assignment of roles is another source of conflicts.

For an example (comp. Fig. 3), consider two service providers (SPs) A and B which
offer service objects RA and RB to their customers, respectively (RA and RB are used
as object roles in this example), with services login and use. Now assume that A and
B decides to collaborate in order to provide a joint service object RJ (Fig. 3). While
defining access control policies for this situation, a difference in the security concepts
of both SPs remains unnoticed: SP A assumes that its customers (belonging to role CA)
are allowed to use RJ once they are logged in either at RJ or RA, while SP B assumes
that a separate login at RJ is necessary for its customers (belonging to role CB). Now
the conflict occurs if there is a customer c ∈ mbrs(C A) ∩ mbrs(CB) that logs in at



Service Provider Example

SPs A and B decide to provide a common service RJ. 

Subject roles are CA and CB, object roles are RA, RJ, and RB 

providing services login and use (we do not need to distinguish 
individual objects). The predicate logged_in(X, s) yields true iff
subject s is logged in at RX, where X ranges over 
{A, J, B}. 

Policies (not complete): 

- CA
+: true � RJ.use

- CA
+: logged_in(A, subj) � RJ.use, 

- CB
-:¬logged_in(J, subj) � RJ.use

RA RJ RB

WSP A 
customers (CA)

WSP B 
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Fig. 3. A conflict caused by multiple role assingments
.

RA. From the point of view of A, RJ .use is now permitted, while it is denied from the
point of view of B.

3 A Methodology for Policy Conflict Detection

In this section, we are going to discuss the key elements of a model checking methodology
and give an overview on how this methodology can be applied to the problem of policy
conflict detection.

3.1 Model Checking

By a model checker we refer to a computer program that checks for a given system speci-
fication or system model (e. g. a Petri Net, a SDL diagram, or some text in a programming
language like notation) and a denotation of a system property whether this specification
satisfies the property, or—stated from a more logical point of view—whether the spec-
ification is a model of the property.3 The term “model checking” refers moreover to a
certain algorithm that can be summarized as “exhaustive system simulation”, i. e. the
explicit enumeration of all possible execution alternatives of the system model while
simultaneously or afterwards checking for violations of the property under validation.
Since the state space of a system model may be exponential (and even super-exponential)
in its size, the model checking approach suffers from what is called the state explosion
problem. There are a number of approaches to deal with this problem; we mention just
a few:

Symbolic State Space Representation. A binary decision diagram (BDD) [3] is a data
structure that stores bit vectors of a fixed length in a highly compressed way. The appli-
cability to model checking was noted by McMillan [4]: a model checker for a temporal
logic called computation tree logic (CTL) can be easily defined by using efficient BDD

3 In the context of model checking, properties are usually given in some temporal logics. See [8]
for a standard reference.
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operations. A prominent implementation of this approach is the model checker SMV
[19].

Partial Order Techniques. In fact, there are two different (although related) approaches
that deserve both the name “partial order technique”. Implicit partial order techniques
base on the idea that it is not necessary to enumerate all interleavings of concurrent
system activities in order to decide a given analysis property. First model checking
algorithms that base on this idea were introduced by Valmari [21] and generalized by
Godefroid [10]. The model checker SPIN [11] used in this paper bases on this approach.
In opposite to implicit partial order techniques, explicit partial order techniques use a
representation of the behavior of a concurrent system that bases on partial orders. See
e. g. [9, 20, 7] for applications to model checking.

3.2 Model Checking Process

How can the model checking approach applied to real system verification tasks? What
is required here is not only an efficient model checking algorithm that produces results
in a reasonable amount of time, but also a suitable validation process. In the following,
we discuss some of the methodological key elements and how they can be applied to
conflict detection in access control policy bases. For that what follows, please refer to
Fig. 4.

System Model. Model checking is performed not on real systems but on system models,
i. e. on abstractions. If we have a complete system specification that covers all behavioral
aspects of its implementation, than we can use this specification directly as starting point
of the validation process. In practice however, specifications are often partial, informal,
or otherwise not suitable. It is however sometimes possible to build an abstraction from
the real, implemented system (see [11] for a detailed discussion).



Environment Model and Composition. Model checking is usually applied to the ver-
ification of reactive systems., i. e. systems that maintain an ongoing interaction with
their environments. Thus having just a model of the system in question is generally not
enough, we also need to have a model of its environment in order to generate stimuli
and to receive responses. A very simple canonical way to define an environment model
is to use a number of process models that repeats to produce concurrently all possible
requests and to accept any response from the system model. This however is not what is
appropriate in all cases. Sometimes, the system model is partial in the sense that it makes
assumptions on the behavior of the environment (although the system implementation
may check for situations in which these assumptions are violated and react accordingly).
Another disadvantage is that the usage of a canonical environment is likely to blow up
the number of system states.

A way out is to use environment models that expresses certain expectations on the
order in which the interactions with the model under validation takes place. Obviously,
this approach produces now only partial results, i. e. if the production environment of
the system implementation does not follow these assumptions, the implementation may
behave incorrect even if it is a correct implementation of its specification. Note that
those more tailored environment models can be obtained by adding further dependencies
(i. e. communication) between canonical environment processes that handles particular
requests.

Problem Translation. Usually, a problem statement (comprising of a system model
together with a verification environment and an analysis question) is expressed in terms
related to a particular domain. Thus a translation of the original system model into the
language of the model checker is needed. The same holds for the specification of the
property to be validated: As already mentioned, most model checkers use some type of
temporal logics as property specification language. Hence, another translation process
is necessary for property specifications.

Result Back Translation. Since during the translation process from the problem domain
into the model checker’s terminology information on the original system model is lost,
the only way to enable a comprehensive result interpretation in terms of the application
domain is to translate not only the system model but also enrich this translation with
enough information to relate events and state components listed in the counterexample
with actions of the original system actions and values.

Application to Conflict Detection. To work out the details of the application of the
model checking methodology to the problem of policy conflict detection, we carried out
a number of experiments using the following tools:

1. To specify policy bases, we defined a small text based description format that cov-
ers all relevant aspects, in particular role structures (including partial orders on
roles), and policy definitions. Conditions has been directly defined as PROMELA
expressions referring to variable values of the environment model (like the predicate
“logged in()” from example 3).
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2. Client and service objects with all provided services are also specifiable in this
description format. For each possible request, i. e. an element of the set

{req(s, o, a) | s, o ∈ I & a ∈ A & o provides service a},

an independent PROMELA process is generated. This process just sends the associ-
ated request and waits for an answer according to the protocol explained in Section
4 below. These canonical environment processes are further enhanced by variables
reflecting their current local states. This information is used in policy predicates (and
could be used for further verification tasks). If a certain behavior of the environment
is assumed, the sending of requests can be sequentialized by additional synchroniza-
tion messages. Finally, logging directives for result back interpretation (see below)
are added. Currently, these modification steps of the canonical environment model
have to be done manually.

3. To allow for result back interpretation, all generated pieces of code are equipped
with extensive logging information. If the model checker reports the violation of a
verification task by a counterexample, then this trace can be replayed. During this
replay, the logging directives are executed. Thus it is relatively easy to interpret a
trace in terms of the original problem statement.

Fig. 5 shows the set of translation and validation tools that are used in our experiments.
The validation process starts with a policy description file. A generator program (white
box) is used to obtain a verification model file from this description as explained in
Section 5. This generator uses another input file containing environment model processes
which is simply appended to the output PROMELA file. Additionally, the generator can
be used to generate canonical environment model processes (gray box).



Then the model checker SPIN is applied. Spin generates a verifier program (in C),
which performes the actual model checking process. If a conflict is detected, a coun-
terexample is generated, i.e. a guided execution sequence of the original input model. If
these sequence is executed again (playback), a trace of the behavior that lead to the con-
flict is obtained. This trace is further processed by a postprocessor program that outputs
a graph description processible by the GraphVis package which is used to generate a
graphical presentation of the conflicting behavior in PNG format. Additionally, a HTML
page containing the set of active policies in the conflicting state and the generated PNG
picture is produced. A simple UNIX shell script is used to pipeline these tools.

4 System and Environment Model

In this section, we describe a generic model of a number of interacting distributed objects.
Interactions are regulated by special access control components.

Recall that I denotes a set of individuals. These individuals—human or automatic—
are realized by concurrently running processes that communicate with other individuals
by sending requests for the execution of certain services and receive the result of those
computation by a replay message.4 In this setting, each individual may appear both as
service requestor and as a service provider. Concerning a specific interaction, we call in
accordance to the terminology introduced in Section 2 the service requestor the subject
and the service provider the object of this interaction.

Access authorization is performed by access control components. We assume that
resources are grouped into pair-wise disjoint sets of objects that are guarded by the same
access control component. Let AC G such an component for a group G ⊆ I. Instead
sending requests req(s, o, a) for some o ∈ G directly to the individual o, the request
is now sent to the access control component AC G. ACG maintains internally a set of
access control policies ΠG. If req(s, o, a) is permitted in ΠG, ACG sends a replay
of the form rep(permit) back to s, and forwards the request to the service provider o

which executes the requested action o.a and sends the result of this computation back
to s. If otherwise req(s, o, a) is denied in ΠG, then a replay rep(deny) is responded to
s. The request is not forwarded. This protocol is depicted in Fig. 6.

The communication model (synchronous, asynchronous, asynchronous with faulty
communication medium, etc.) that is used to realize the interactions described above
clearly depends on the environment in which these interaction takes place (in the Internet,
in presence of a reliable middleware, etc.), and on the level of abstraction that is chosen for
the system model. In this paper, we assume that interactions are realized by asynchronous
communication using an input queue model (compare Fig. 7.(a)): Each individual i ∈ I

maintains several input queues of fixed capacity (according to the finiteness assumption
of the model checking approach) in which incoming messages are stored. If the capacity
of a message queue is reached, then another individual j ∈ I that uses this queue to
communicate with i is blocked until i consumes another message from that queue. The
special case of a queue capacity equal to zero results in a synchronous communication.

4 We do not assume that each individual is implemented by a sequential process. In fact, individ-
uals may perform several tasks concurrently. An example is the set of canonical environment
processes for the requests that are sent by the same subject.



Subject s Object o

execute o.a

req(o, a)

rep(o.a)

Subject s ACG Object o

req(o, a)

req(o, a)
rep(permit)

execute o.a
rep(o.a)

Subject s ACG

req(o, a)

rep(deny)

Left: without access control. Request of s for a is sent to o.

Bottom left: with access control, service execution denied. a is 
not executed at al l (o ∈ G).

Bottom right: with access control, service execution permitted: 
Request is forwarded from o’ s access control ACG to o and 
handled at o. s receives a receipt from ACG and the result of the 
service execution of o.a from o (o ∈ G). The simplified protocol 
is again obtained by deleting the gray colored parts.

Fig. 6. Interaction protocol to request a service

This communication model can directly be mapped on the channel communication model
supported by PROMELA.

Note that if all service providing individuals are passive in the sense that they react
only on requests of other individuals without initiating actively any interaction, and
moreover, they are stateless, i. e. their behavior do not depend on (local or global)
variables or on interactions with other processes, then a simplified interaction model can
be applied. This model is obtained by deleting the gray parts in the Figures 6 and 7.

5 Problem Translation into Promela

We now briefly discuss how to translate a system structured as outlined in Section
4 into POMELA. Let ΠG be a set of policies for some group G of objects and let
π = s

x : ϕ ⇒ o.a ∈ ΠG be a policy. Recall that the mapping mbrs associates a set of
individuals with each role r ∈ R. Further recall the definition of a propagation scheme
as a pair of mappings prgtS and prgtO.

Fig. 8 shows several code fragments that are the result of the translation of a set of
policies and associated environment models into a PROMELA program. Unimportant
parts, e. g. an initial process that initiates all other processes, are omitted; furthermore,
only models for particular requests are not shown. We moreover take the freedom to leave
some parts of the program implicit (in particular arrays of channels and the associated
access mechanisms). Some of the code fragments are named (EXP, EVAL) for further
reference; the translation procedure that has been implemented replaces these “macros”
be the defining pieces of code. The meaning of the “macros” LOG and LOG IF will be
explained in Section 6.

Our program makes extensive use of the PROMELA feature to send channel identifier
as parts of messages: for instance, if a process P1 declares a local channel identifier C

and sends it to another process P2, then C can be used by P2 to send messages back to



request channel

permission 
channel

req(s, o, a)

permit | deny

client
(subject s)

server
(object o)

request channel

replay channel

req(o, a)

rep(o.a)

client
(subject s)

server
(object o)

access 
Control

ACG

req(s, o, a)

replay channel
rep(o.a)

sync

(a) Basic interaction protocol without access control

(b) Basic interaction with access control. A simplified interaction for passive 
objects and “neutral” services that does not contain the gray parts.

where
- req(s, o, a) is a request 

from a subject s to an 
object o for a 

- rep(o.a) is the replay 
of the result of executing 
a at object o

- o belongs to group G

Fig. 7. Basic interaction between subjects and objects

P1 without knowing the identity of P1. For the sake of convenience, we assume that all
message queues (if not synchronous, i.e. of capacity 0) are of the same length (say n).
We moreover assume that the execution of any service yields a datum of type result.

Fig. 8.(a) shows a canonical subject model for a possible request. The process initiates
the request for a service execution by some object o and receives the response from
the access control associated with the group G to which o belongs. If this response
is positive, then the process gets ready to recieve the result of the computation of the
requested service from the object o.

In Fig. 8.(b), the code to determine the activation of a policy π is shown. It is checked
whether the subject and object of a request belong to the respective subject and object
roles of π, and whether the service identifier of the request is equal to the service identifier
of π. Finally, the predicate ϕ is evaluated. Note that the sets mbrs(r), prgtS(s), and
prgtO(r) are always finite. Thus the question whether an individual belongs to a given
set of roles can be expanded to a Boolean expression (compare the code fragment EXP).
The access control process (Fig. 8.(c)) maintains two integer variables n+ and n− that
are used to count the number of positive and negative authorization policies that are
active of a given request.

Finally, Fig. 8.(c) shows how a set of policies ΠG is embedded into an evaluation
environment, namely the process AccessControlG. The process starts with receiving a
request via the globally defined request channel reqG. With the request, two channel
identifier are transferred: prep is used to send the result of the policy evaluation process
(true for permit and false for deny) back the the requesting process, while res is fore-
warded to the service providing object to transfer the result of the service computation
back to the client.

The access control process continues with the evaluation of all policies using the
code fragment EV AL as explained before. During policy evaluation, the number of
active positive and negative policies is stored in the variables n+ and n−, respectively.



(1) chan reqG = [n] of { mtype, mtype, mtype, chan, chan }; /* One channel for each group G */

/* “Template process” for the handling of requests req(s, o, a) */
(2) proctype Request(mtype s, mtype o, mtype a) {
(3) chan prep = [0] of { bit }; chan rep = [n] of { result }; result res;
(4) do
(5) :: LOGs(“sending request %e, %e, %e”, s, o, a);
(6) reqG!s, o, a, rep, prep;
(7) if
(8) :: prep?true → rep?res; LOGs(“request %e, %e, %e granted”, s, o, a)
(9) :: prep?false → LOGs(“request %e, %e, %e denied”, s, o, a)
(10) fi
(11) od
(12) }

(a) Cannonical Models of Individuals (one process for each possible request)

(1) EXP(i, {i1, i2, . . . , in}) ≡ (i == i1 ‖ i == i2 ‖ · · · ‖ i == in)

(2) EVALπ(s, o) ≡
(3) if /* Check whether policy π = s

x : ϕ ⇒ o.σ is active */

(4) :: EXP
(

s,
⋃

s∈prgtS(π) mbrs(s)
)

&& EXP
(

o,
⋃

o∈prgtO(π) mbrs(o)
)

&& ϕ →

(5) nx++; LOGAC(π)
(6) :: else → skip
(7) fi

(b) Policy Evaluation Code

(1) proctype AccessControlG() {
(2) chan prep = [0] of { bit }; chan res = [n] of { result };
(2) chan frwdo = [0] of { mtype, chan }; /* One channel for each o ∈ G */
(3) mtype s, o, a; int n+, n−;
(4) do
(5) :: reqG?s, o, a, prep, res →
(6) atomic {
(7) LOGAC(“request %e, %e, %e recieved”, s, o, a);
(8) n+ = 0; n− = 0;
(9) EVALπ1

(s, o, a); EVALπ1
(s, o, a); . . .; EVALπk

(s, o, a);
(10) LOG IFAC(n− ∗ n+ != 0, “conflict found”);
(11) assert(n− ∗ n+ == 0);
(12) if
(13) :: (n+ > 0) → prep!true; frwdobj !a, res; LOGAC(“replay %e, true”, s);
(14) :: else → prep!false; LOGAC(“replay %e, false”, s);
(15) fi;
(16) LOGAC(“request processed”);
(17) }
(18) od
(19) }

(c) Access Control Process

Fig. 8. PROMELA model code



Obviously, we have a conflict if and only if n + × n− =| 0 is true. We use an assert
statement to turn this condition into a verification task for SPIN.

The request is permitted if n+ > 0 & n− = 0 is true (if the first part is true, the
second term is assured by the preceeding assert statement). If this is the case, the service
request is forwarded to the service providing object.

6 Interpretation of Results

Let us now discuss how to transfer information on possible conflicts back to the sys-
tem administrator who is responsible to maintain a set of policy bases. It happens that
PROMELA provides output directives that allows to print out a string during the replay
of a counterexample. While translating the system model and composing it with the en-
vironment models, we enrich the resulting composition with suitable output statements.
Thus if a counterexample is displayed, the resulting trace is expressed on domain specific
level in terms of active policies, requests, and replays.

In the PROMELA code of Fig. 8, we made use of two code abbreviations, namely
LOGv(. . .) and LOG IFv(c, . . .). Here, v is the identification of an individual, or of an
access control component. LOGv(. . .) is expanded to code that prints out the information
given in the “argument” prefixed by v, LOG IFv(c, . . .) does the same if the condition c

evaluates to true (similar to the syntax of C language format strings, %e is used to output
an identifier (of type mtype)). Thus while replaying a counterexample trace, SPIN prints
out the interaction of individuals and access control components that has lead to a system
state in which a conflict has been occurred. Since it is impossible in PROMELA that
a message overtakes another one (we do not use the random receive operation (“??”)),
the order of messages in such a trace reflects the order in which these messages have
been sent and received. Thus it is possible to reconstruct the component-local part of
the interaction from the global interleaving of events reported by the LOG directives.
Special treatment has to be done for messages that have been sent but have not been
received at the point of time when a conflict (i. e. the violation of an assert statement) is
detected. Fig. 9 shows an example of a conflict report produced from a counterexample
trace for the conflict situation that has been discussed in Fig. 3 (the additional “logged
in at A” event was produces by an additional LOG statement in the process for the login
request).

7 Summary and Further Work

In this paper a role based access control model that provides multiple assignments of sub-
ject and object roles to individuals (service requestors and providers) has been defined.
It has been shown that policy conflicts from several sources are possible in this scheme.
A methodology to use model checking techniques (tailored for the model checker SPIN)
has been defined. This methodology provides the definition of a canonical verification
environment as well as the translation of results back into the terminology of the ap-
plication domain. Although our approach works reasonable fast for small examples, a
“real-world” case study has not been done yet.

Our work can be extended in several directions, we just mention a few:



Active policies in the conflict state

• CA+: “logged_in(A, subj)”  =>  RJ.use
(subject = c, object = r). 

• CB-: “!logged_in(J, subj)”  =>  RJ.use
(subject = c, object = r).

Conflict report

Conflict detected!

Fig. 9. Conflict report example output

1. Another type of policies not considered in this paper are obligation policies. An
obligation policy states that under certain circumstances a subject has to perform a
particular action.5 Clearly, the subject is not allowed to defer this action, it has to
perform it as soon as possible. This adds another difficulty because in a concurrent
environment the notion of the next action to be performed is not clear. In particular,
none of the available standard model checkers seem to be able to deal with this
problem. In opposite to that, model checkers that base on an explicit partial order
representation of the system behavior may provide the necessary temporal operators.

2. The example in Fig. 9 shows that the model checking approach is capable to pro-
duce very precise information on the circumstances under which a policy conflict
can occur. A conflict resolution method based on this approach could use this infor-
mation to resolve a conflict exactly in those system states in which it occurs without
modifying the set of policies under consideration more than necessary.

3. In the current setting, the set of policies cannot be modified during the validation
process. A dynamic environment however may implement computation and en-
forcement of new policies (the easiest example is an individual that changes the
permissions of another one). PROMELA provides the necessary data structures
(arrays and structures), but details have not been worked out yet.
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